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An asymptotic analysis of the solution of the equations of filtrational flushing 
of sediments for low values of the Peclet number is performed. 

Filtrational flushing of sediments, i.e., removal of impurities from a porous body by 
injecting a flushing liquid through it, is a mass-exchange process. At the present time, 
the basic model of this process is a model in which two intercoupled concentrations of the 
impurity are introduced: in the flow-through part and in the stagnation zones [i]. Accord- 
ing to [i], the equations for determining these concentrations have the form: 

Pe (Ocl/a~ + Ocl/Oz) = O~cl/Oz 2 § n (c~ - -  cl), (1)  

Pe ~Oc~/O~ = n (c I - -  c2) , ( 2 )  

where 

x = ~ l l e ,  n = k I 2 / D ,  ~ = ( 1 - - s ) / s .  

Systems of equations analogous to (1)-(2) arise in the theory of heat conduction in 
heterogeneous media [2], adsorption, and elsewhere. It is known [3] that the coefficients 
of the model D and k may be assumed to be constants only when the relaxation of the inter- 
phase exchange is completed. It is precisely these (long) time intervals which are of in- 
terest for the description of the flushing process. Since at the present time only the 
cases of constant D and k find application in the theory of flushing, which is a result of 
the inadequate study of the time dependence of these coefficients and the difficulty of their 
experimental determination [4], we shall assume that these coefficients are constant. We 
also note that Eqs. (1)-(2) ignore the adsorption of the impurity on the interphase surface 
which sometimes occurs. 

The boundary conditions for Eq. (i) will be as follows: 

0c~ = Pe c~, a c~  = 0. (3> 
Oz z=o Oz z=l 

The first condition expresses the absence of an impurity flow at the input to the porous 
body and the second (at the output) is the usual Dankwerst condition. Initially the con- 
centration of the impurity can have any distribution in the porous body. Therefore, the 
initial conditions will be as follows: 

c~l~=o = K(z),  c21~=o = L(z ) .  (4) 

We shall assume that the number Pe is small. Then, to find the solutions of the problem we 
can use the methods of the theory of small perturbations [5]. We represent the solution 
sought to the problem (1)-(4) in the form of the following expansions in powers of Pe: 

cl = fo(Z, ~) + Pe f l ( z ,  T) + . . . .  c~ : Fo(z, ~ + PeF l ( z ,  T~ + . . .  (5)  

Substituting the expansions (5) into Eqs. (I) and (2), as well as into the boundary 
conditions (3), we obtain, by grouping terms of the same order with respect to the Pe number, 
the following chain of equations and boundary conditions: 

a~fo/az ~ = n (L - -  &),  fo = to, O?o/aZl~=o;, = o, ( 6 )  

o~f~lOz ~ § n ( F ~ -  f 0  = afo/0X § ~olOZ, ~x/0zlz=o = fo, 
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wOFo/O~ = n ( h -  F3, Oh/Ozl~=, = 0, ( 7 )  

OVJOz ~ + n (G  - -  [~) = O l d &  + Ofl/Oz, 

~OF~I~ = n ( f 2 - -  F~), ~d&l~=0 = [~, OfdOzl~=l = 0 (8) 

and so on.  We s h a l l  o n l y  need  t h e  Eqs.  ( 6 ) - ( 8 ) .  

E q u a t i o n s  ( 6 ) - ( 8 )  do n o t  c o n t a i n  t i m e  d e r i v a t i v e s  o f  t h e  f u n c t i o n s  s o u g h t .  ( E q u a t i o n s  
(7) and (8) c o n t a i n  t i m e  d e r i v a t i v e s  o f  t h e  f u n c t i o n s  which  mus t  be  d e t e r m i n e d  b e f o r e h a n d . )  
Therefore, the initial conditions (4) must be dropped. The problem is a slngular-perturba- 
tion problem [5], and some properties of the "inner" solution are required to solve it. The 
problem (6) has the following solution: 

fo = Fo = A (~), (9) 

where A(~) is an unknown function of time. We substitute this solution into the equations 
and boundary conditions (7). Carrying out the integration, we find 

fl = (1 + ~) z:A' (~)/2 + zB(~) + C(~), FI = fa - -  ~A'/n,  (10) 

where  B(x) and C(x) a r e  unknown f u n c t i o n s  o f  t i m e .  S u b s t i t u t i o n  o f  t h e  e x p r e s s i o n s  (10) 
into the boundary conditions leads to the relations 

B = A ,  ( I + ~ ) A ' ( , ) + A ( * ) = O .  (11) 

We have thereby obtained a differential equation for the function A(T). Proceeding analo- 
gously, we find that the function C(~) must satisfy the following equation: 

(I + ~) C'(~) + C(~) + A(T)/6=O (12) 

The initial conditions which are required to determine the functions A(T) and C(T) uniquely 
must be established by joining with the inner solution. We now proceed to determine some of 
its characteristics. 

It is easy to see that T = T/Pc is a suitable inner variable. Equations (i) and (2) 
then assume the form: 

Ocl/OT + Pe a c j a z  = O~c~/az~ + n (c~--cO, (13) 

~OcJOT = n (c~ -- c2). (14) 

The s t a r t i n g  c o n d i t i o n s  (3) and (4) w i l l  be  a d d i t i o n a l  c o n d i t i o n s  f o r  t h e  i n n e r  p r o b l e m .  
We s e e k  t h e  s o l u t i o n  o f  Eqs .  (13) and (14) i n  t h e  fo rm o f  e x p a n s i o n s :  

cx = go(z, T) + Peg~(z,  T) + . . . .  c2 = Go(z, T) + PeGx(z, T) + . . . .  (15) 

S u b s t i t u t i n g  t h e  e x p a n s i o n s  (15) i n t o  Eqs.  (13) and (14) a s  w e l l  a s  i n t o  t h e  a d d i t i o n a l  c o n -  
d i t i o n s  (3) and ( 4 ) ,  we o b t a i n  i n  t h e  z e r o t h  o r d e r  a p p r o x i m a t i o n w i t h  r e s p e c t  t o  t h e  Pe 
number t h e  f o l l o w i n g  p r o b l e m :  

Ogo/OT = O~go/Oz 2 + n (Go - -  go), 

~aao/OT = n (go - -  Go), (16) 

OgO_~z ~=o;I = 0, go[r=o = K(z), Golr=o = L(z). (17) 

The solution of the problem (16) and (17) describes the process of flushing with short 
times (T of the order of unity). Strictly speaking, this is the solution for "ideal mixing," 
because it determines the rapid (~ % Pe) equalization of the concentrations by diffusion, 
while the argument of the outer solution (the function A(x) in the zeroth-order approxima- 
tion) is the "slow" time with the characteristic scale I/u. In practice, for the sediment- 
flushing process, the behavior of the solution at long times, i.e., the outer solution, is 
of basic interest. We shall therefore not study here in detail the solution of the problem 
(16) and (17), but we shall only find the asymptotic behavior of go in the limit T § ~ re- 
quired for joining with the outer solution. 

We apply to Eqs. (16) and the boundary conditions (17) Laplace's transformation with 
respect to the variable T. We shall denote the quan_tities in the transform space by a bar. 
After some calculations, we find that the function go satisfies the equation 

d~go/dz~ = r - -  J (z, p) (18) 
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and the boundary conditions dgo/dz = 0 at z = 0 and z = i. Here the functions ~ and J are 
defined by the expressions 

r = n + p -- n'/(~p + n), J = K (~ + n~L (z)l(wp + n). (19) 

The solution of Eq. (18) with the formulated boundary conditions has the form 

| Z 

- ch(,z) I ch[@(l--~)]J(~, p)d~-- I sh [, (z -- ~)] J(~,p)d~. (20) 
go = r sh--'--~.  - , r " 

0 0 

As is well known [6], the limit go as T § = can be determined from the following equality: 

lira go(z, T ) :  lim pgo(z, p) (21) 
T ~  p~O 

under the condition that the second limit exists. It is evident from Eqs. (19) that in the 
limit p § 0 J is of the order of unity and ~2~(~+l)p. Therefore, only the first term will 
contribute to the limit (21). From here we find, using the principle of asymptotic joining 
[ 5 ] ,  

1 ! 

A(O)=fo(z, 0)= g0(z, oo) =l i ra  P fch[$(l--~)]d(~,p)dg= 1 p~o r  . (~ + 1) [K(z) + ~L(z)]dz, (22) 
0 0 

the initial condition sought for the function A. We can now integrate Eq. (ii). We obtain 
! 

A (~) = exp (--tuff) f [eK (z) + (! -- e) L (z)] dz. (23) 
0 

In Eq. (23), we have transformed to the dimensional time t and the quantity r in order 
to show more clearly the characteristic time scale and the role of the volume fractions 
and (i -- e) in the zeroth-order solution with respect to Pe. We can see that in the outer 
solution the initial conditions (4) have been transformed into some integral characteristics; 
in addition, the functions K(z) and L(z)enter into it with the corresponding volume frac- 
tions ~ and (i -- E). We also note that the zeroth-order approximation (23) does not contain 
the parameter n. It will affect the process in the outer solution only in the first approxi- 
mation with respect to Pe (Eq. (29)). 

The equations in the flrst-order approximation with respect to Pe in the inner expan- 
sion will have the form 

Ogl/aT +Ogo/aZ = O~gl/Oz~+ n(Gl--gO, 

~OG1/OT = n ( g l  -- G1)" (24) 

The initial conditions for Eqs. (24) will be zero conditions, and the boundary conditions 
will assume the following form: 

agl/az [~=o = go, agllaz]~=, = o. (25) 

The limiting relation (21) leads to the conclusion that it is convenient to join the 
inner and outer expansions in the region of the Laplace transformations of the corresponding 
functions. Application of the Laplace transformation to the problem (24) and (25) leads to 
an equation analogous to (18), from whose solution the expansion of the function g~ in powers 
of p is found: 

! l 

gl~A' (O)/p~ W [zA(O)--z2A(o)/2 " A(0)/6+ (l - -e )~  2A(0)(l--el=n 2e ~ ~J (~, O)d~]/p+. .. (261 
0 0 

We now rewrite the outer expansion of c, in terms of inner variables and we expand in powers 
of Pc: 

~r fo(T Pe) + Pe f1.(T Pe)N ~ i0) + Pe [/1 (0) + TOfo/a~[~=o]+... (27) 

The application of Laplace's transformation to the expansion (27) gives 

~ A (O)/p § Pe [f~ (z, O)/p + A" (0)/p~]+... (28) 

Comparison of the expansions (26) and (28) leads to the initial condition sought for the 
function C: 
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1 1 

C(0)- (i---e/n .iL(z)dz-- 2A (0)( In -- ~)2 A(0)6 --Te f~.,j,~_ ~, 0)a~. (29) 
0 0 

Now the solution of Eq. (12) is easily found: 

C (~) = exp (--,8)[C (0) -- ~A (0) ~/6], (30) 

where the quantities A(0) and C(0) are determined by Eqs. (22) and (29). As before, only the 
integral characteristics of the functions K(z) and L(z) affect the behavior of the outer 
solution. The expression for the concentration cx with accuracy up to terms of the order 
of Fe can be written in the form 

cl ----- exp (--~e){A (0) [1 + Pe (z - -  zU2  - -  e~/6)] + Pe C (0)} + . . .  (31) 
By making the transformation ~: T-+T(I+Pe/6). the secular term--reA(0)Pe/6 can be eliminated 
in the usual manner [5], thereby expanding the region of applicability of the expression 
(31). We have 

cl = exp [--Te (1 + Pe/6)]{A (0)[1 + Pe ( z -  z2/2)] + Pe C (0)} + 0 (Pe'). (32)  

It should be noted, however, that the improvement of the expansion (31) occurred only for 
quite large values of 3. In the limit T § 0, Eqs. (31) and (32) will give an error, which 
can be eliminated by invoking the inner solution. Thus the magnitude of the correction 
O(Pe 2) in relation (32) is irregular in the limit T -> 0. 

As an illustration of the results obtained, we shall study the case of greatest practi- 
cal interest when K(z) = L(z) = i. Calculating the quadratures required in Eqs. (22) and 
(29), we obtain from relation (32) the following expression for the concentration of the 
impurity in the flow-through part: 

cl = exp[--T~(1 + Pe/6)]{1 4- Pe [ z - -  z2/2 - -  1/3--(1 - -  e)2/n]} 4- . . .  (33)  

A method for reducing the system (i) and (2) to a single "equivalent" equation, from 
which it is possible to obtain the approximate solutions of problems for sufficiently long 
times, was proposed in [3]. It is of interest to compare the result (33) with the solution 
obtained from the equivalent equation, which in our variables will have the form: 

8 a.~ + ~ / =  Oz - - q -  + n ( - -1 )  k a~ k 
k = 2  

The solution with an accuracy up to terms of the order of Pe can be obtained by dropping all 
terms in the sum. In this case, it is clear that the equation obtained will not describe 
exchange between the flow-through part and the stagnation zones, since the parameter n drops 
out of the problem, whereas the relation (33)contains this parameter. Because the solution 
of the equation 

Pe [OCl/O (eT) + c3cl/Oz] = O~qlOz 2 (35)  

is of interest in itself for the description of a number of mass-transfer processes (includ- 
ing also for flushing sediments), we shall present its solution with an accuracy up to terms 
of the order of Pc. Following the scheme presented above, it is easy to verify that the 
equations of order 0(i) and O(Pe) will coincide with Eqs. (ii) and (12). The inner solution, 
however, found by the usual methods of mathematical physics gives 

cl = 1 + Pe z 2 3 ~ T +  - - ~  - -  exp ( - - ~ 2 k ~ T )  cos (z~kz) + . . .  (36)  
= 

Dropping the terms which are exponentially small in the limit T § = and joining with the 
outer solution, we obtain the initial conditions for Eqs. (ii) and (12) 

A(0)= I, C(0)=--I/3 (37) 
(ii) and (12) with the conditions (37) permits writing the solution of The solution of Eqs. 

Eq. (35) in the form 

cl = exp [ - -Ts (1  + Pe/6)]{1 + P e ( 6 z - - 3 z 2 - - 2 ) / 6 }  + . . . .  (38)  

where we have eliminated, analogously to the relation (31), the secular term. The expression 
(38) raises the accuracy of the well-known relation of H. Brenner for "ideal mixing" [7] 
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up to terms of order Pc. Using the inner solution, we construct the uniformly applicable 
expansion of the first order 

oo 

2Pe E (--1) exp(_~k~e.~/Pe)cos(~kz)  + O(Pe~) I (39) �9 cl ---- exp[---~e(1 + Pe/6)]{1 + Pe(6z-- 3z~--2)/6} + ~x ~ k~ 
k-----t 

If one or several terms are retained in the sum of Eq. (34), then the parameter n will 
enter into the equation, but a calculation, analogous to the one performed above, shows that 
the outer solution of the problem remains unchanged -- (38). Transfer between the flow- 
through part and the stagnation zones will only affect the inner solution, and then the 
transfer parameter n will occur only in the exponent in a sum of the type (36). This leads 
to the conditions (37) and the same outer solution up to terms of order Pc. The reason for 
the incommensurability of the solution (38) with Eq. (33) lles in the fact that the expres- 
sion for c2 

c2_~ ~.,~ (__l)h (q)Pe lh c~kcl 
~, tz / O'~ ''-k ' (40) 

h=O 

which we used in analogy to [3] in the method of the equivalent equation, is applicable only 
for long times (as is the equivalent-equation method in general). At short times, however, 
using the operational method, we find from Eq. (2), using the initial condition L(z) = i, 
that the term exp (--nx/~Pe), which significantly affects the behavior of the inner solution 
and, therefore, the joining with the outer solution, must be added to the sum (40). An im- 
portant fact here is that in order go describe correctly the inner solution it is necessary 
to retain all terms in the sum (34) in addition to the exponential term mentioned above. 

The considerations presented above for the example of the problem with constant D and 
k show the significant influence of the starting stage of the process on the behavior of the 
solution at long times. We also note that when a sufficient number of terms are retained in 
the equivalent equation (34), equations of the type (ii) and (12) of the outer problem, 
which completely coincide with the equations obtained by the previous method, can be ob- 
gained. In this case, the use of the equivalent equation leads to some simplification of 
the intermediate calculations. 

NOTATION 

c, and c2, dimensionless concentrations of the impurity in the flow-through part and in 
the stagnation zones, respectively; D, dispersion coefficient; f and F, external variables; 
g and G, internal variables; k, kinetic mass-transfer coefficient; K(z), L(z), dimensionless 
initial values of the impurity concentrations in the flow-through part and in the stagnation 
zones (scaled to the characteristic value of the concentration); Z, thickness of the sedi- 
ment; Pe= u~/D, Peclet number; p, Laplace transform variable; T = T/Pe, inner time; t and 
x, dimensional time and the coordinate along the layer; u, filtration velocity; z = x/Z, 
dimensionless coordinate; e, fraction of the flow-through part in the total void volume of 
the porous body; and T, outer time. 
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